REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, inclu
gathering and maintaining the data needed, and completing and reviewing the collection of information. S
collection of information, including suggestions for reducing this burden, to Washington Headquarters Serv
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Pa|

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE _ ., -

3. REPv..

AFRL-SR-BL-TR-00-

Ofos—

15 December 1996-14 December 1999

urces,
of this
ferson

4, TITLE AND SUBTITLE
Mobile Agents and Systems Principles

5. FUNDING NUMBERS
F49620-97-1-0013

6. AUTHOR(S)
Fred B. Schneider
Gregory Morrisett

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Computer Science Department

Cornell University

Ithaca, New York 14853

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR
801 North Randolph Street, Room 732
Arlington, VA 22203-1977

AGENCY REPORT NUMBER

F49620-97-1-0013

10. SPONSORING/MONITORING

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release.

12b. DISTRIBUTION CODE

13. ABSTRACT /Maximum 200 words)

Under the auspices of this AFOSR funding, research was performed on a variety of topics related to the implementation of

fault-tolerant and secure systems, with emphasis on systems that are extensible and/or that employ mobile code. The
research involved theoretical as well as practical components and led to 32 publications (listed at the end of this report),

including two books, and two patents.

14. SUBJECT TERMS

15. NUMBER OF PAGES
9

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION
OF ABSTRACT

OF REPORT OF THIS PAGE

20. LIMITATION OF ABSTRACT]

DTIC QUALITY INTPEOTED 4

Standard Form 298§Rev. 2-89) (EG)
d. 239.18

Prescribed by ANSI St

Designed using Perform Pro, WHS/DIOR,

Oct 94

an 523
Mobile Agents and Systems Principles
AFOSR Grant F49620-97-1-0013
Final Technical Report
1 August 96 — 14 December 99
Fred B. Schneider Gregory Morrisett
Computer Science Department Computer Science Department
Cornell University Cornell University
Ithaca, New York Ithaca, New York
(607) 255-9221 (phone) (607) 255-3009 (phone)
(607) 255-4428 (fax) (607) 255-4428 (fax)

fbs@cs.cornell.edu jgm@cs.cornell.edu

Research Accomplishments

Under the auspices of this AFOSR funding, research was performed on a
variety of topics related to the implementation of fault-tolerant and secure
systems, with emphasis on systems that are extensible and/or that employ
mobile code. The research involved theoretical as well as practical compo-
nents and led to 32 publications (listed at the end of this report), including
two books, and two patents.

Agent Integrity

Agents comprising an application must not only survive (possibly malicious)
failures of the hosts they visit, but they must also be resilient to hostile ac-
tions by other hosts. Replication and voting enable an application to survive
some failures of the hosts it visits. Hosts that are not visited by agents of the
application, however, can masquerade and confound a replication scheme.
Two classes of protocols to solve these agent integrity problems were initially
developed as part of this AFOSR project. One class uses chained crypto-
graphic certificates; the second class uses cryptographic signature-sharing.

20000908 057

¥ LNEPEOTED 4

We were then able to unify these protocols by viewing them in terms of del-
egation. In each, the principals are sets of hosts (services) and authorization
is transferred from one principal to another. v

In some settings, hosts being visited by agents cannot be replicated, so
the preceding protocols do not apply. This led us to investigate protocols for
agent fault-tolerance without host replication.! With these NAP protocols,
execution of an agent A on a host is monitored by agents (napping) on other
hosts. If the failure of A or of the host on which A executes is detected, then
one of the napping agents performs a recovery action. This recovery action
might involve retrying A, dispatching a different agent to some other host,
or alerting the computation’s initiator of a problem. NAP is not resilient to
hostile host failures, but without using replication no scheme can be.

The difficult part of implementing NAP involves coordinating the nap-
ping agents. A protocol that tolerates multiple failures must have multiple
agents napping, each monitoring execution. A coordination protocol is re-
quired to ensure that more than one napping agents does not detect and try
to restart a failed agent. Our initial solutions to the coordination problem
were complex enough that their correctness was suspect. This led us to show
that the problem was actually an instance of the (fail-stop) reliable broad-
cast problem that we solved in 1983. And, by refining our 1983 protocol,
we were able to support a broad class of strategies for how napping agents
are disbursed in the network. This broader class of strategies allows our
protocols also to work when the trajectory of an agent folds back on itself,
visiting a host that is still running a napping agent.

Enforceable Security Policies

A security policy defines executions that, for one reason or another, have
been deemed unacceptable. To date, application-independent security policies—
like mandatory and discretionary access control, information flow restric-
tions, and resource availability—have attracted most of the attention. But
with the expanding role of computers in our infrastructure, specialized, ap-
plication-dependent security policies are becoming increasingly important.
For example, a system to support mobile code might prevent information
leakage by enforcing a security policy that bars messages from being sent
after files are read. To support electronic commerce, a security policy might
prohibit executions in which a.customer pays for a service but the seller does
not provide that service.

1This work is joint with Dag Johansen at the University of Tromsoe (Norway) and
Keith Marzullo at the Univ of California, San Diego.

Over the period of this grant, we developed a mathematical character-
ization of what security policies are enforceable. First, we proved that en-
forcement mechanisms cannot exist for security policies that are not safety
properties. Second, we developed a new class of enforcement mechanisms
and proved that it is complete for the set of all enforceable security poli-
cies, which turns out to be the set of safety properties. Our new class of
mechanisms is based on security automata, automata that accept finite and
infinite sequences.

A security automaton serves as an enforcement mechanism for some
target system by monitoring and controlling the execution of that system.
Each action or new state corresponding to a next step that the target system
takes is sent to the security automaton and serves as the next symbol of
that automaton’s input. If the automaton cannot make a transition on an
input symbol, then the target system is about to violate the security policy
specified by the automation, and the target system is terminated.

We demonstrated the practicality of enforcing security policies expressed
using security automata by constructing and evaluating tools to generate
inlined reference monitors that implement security automata for both the
Java Virtual Machine and Intel x86 machines. The first prototype (SASI)
- worked for programs written or compiled into Java virtual machine code
(JVML) or Intel’s x86 machine code; a second generation (PoET/PSLang)
refined the approach for JVML. Specifically, given a security automaton SA
that expresses a security policy and given a machine language program P,
both SASI and PoET/PSLang add checks to P that are necessary in order
to ensure that executing P is guaranteed not to violate the security policy
defined by SA. In addition, using standard compiler analyses, our prototypes
attempt to minimize the number of checks inserted.

Using SASI, we experimented with generalizations of two well known se-
curity policies: software fault isolation (SFI) and the Java Standard Security
Manager. Our experiments confirmed that SASI generates code comparable
with hand-coded, heavily optimized SFI tools for the x86, and in fact ex-
ceeds the performance of the hand-coded Java Standard Security Manager.
Furthermore, security automaton specifications of the security policies have
proven to be easy to write, understand, and modify. Using PoET/PSLang,
we showed how to support the Java 2 “stack inspection” security policy
without any support from the Java virtual machine. This, for example, al-
lows Java 2 programs to be executed on previous generations of the Java
run-time system; it also allows deployment of variations and refinements of
the Java security policy.

Inter-agent and Host Security

Not only must agents be protected from attack by hosts, but hosts and agents
must be protected from attack by other agents. Traditional approaches to
ensuring host and inter-agent security employ a reference monitor or inter-
preter to execute operations on behalf of untrusted agents. However, the
run-time costs of this can be prohibitive. We therefore investigated an al-
ternative approach based on proof carrying code (PCC). In the general PCC
framework, each agent comprises raw machine code and a formal proof that
the code will not violate the security policy of interest. Before executing
an agent, a host checks the proof. To make the system practical, we con-
centrated on type safety as the security policy and constructed a compiler
that automatically produces native code and a proof of type safe from a
high-level, strongly-typed language. When the type system is sufficiently
powerful to encode the security policy, no run-time cost is incurred; and
when the type system is too weak, run-time checks are inserted in the code,
but the type system ensures that the checks cannot be bypassed.

The first step was to design a strongly typed assembly language (TAL)
suitable for use as a target language for programming agents. The type
system for this assembly language is powerful enough to ensure that a wide
variety of safety properties are satisfied. For example, if a host provides
an interface for the abstract type file descriptors along with operations for
creating and manipulating file descriptors, then type correct program agents
cannot forge file descriptors nor can they apply any operations to file de-
scriptors except those exported by the host.

Many high-level languages, such as Java and SML, provide similar guar-
antees. However, TAL has two important properties that make it more ap-
pealing in environments with mobile code. First, as an assembly language,
TAL can serve as a target language for a variety of high-level language com-
pilers, including those for both Java and SML. Agents that are compiled
to TAL need not be tied to a particular language environment. Second, all
compilation, including low-level optimizations like copy propagation, regis-
ter allocation, and instruction scheduling, can be performed before shipping
agents to a host. Thus, unlike current Java implementations, a host need not
have access to a trusted high-level language compiler or interpreter in order
to support an agent. Furthermore, there is no need to pay the overhead of
interpretation or compilation before invoking an agent.

To demonstrate the expressiveness of TAL, we showed how to compile
a high-level ML-based language to TAL, and we have proven that such a
compiler “preserves typing”. Specifically, we established:

e The compiler always produces well-typed assembly language.

e Type abstractions at the source level are preserved at the assembly
language level.

Thus, for example, a host might use an ML abstract type to implement file
descriptors, compile the ML code to TAL, and the type system of TAL will
ensure that no agent can forge descriptors as described above.

The design principles behind our idealized typed assembly language were
used to provide a concrete implementation of these ideas. In particular,
we constructed a suite of tools for automatically type-checking annotated
Intel x86 assembly language (and object files). We also constructed tools
to verify that object files match specified interfaces and, therefore, may be
safely linked to form a well-typed executable program.

To evaluate the claims that a typed assembly language provides both lan-
guage independence and support for highly-optimized code, we constructed
a set of prototype compilers that map high-level language programs to type-
correct assembly code. Specifically, we constructed prototype Scheme and
Safe-C compilers that generate type-correct Intel x86 code. In addition,
we built a number of language-independent optimizations such as graph-
coloring register allocation, in order to identify shortcomings in the type
system that prevent optimization and to compare our approach quantita-
tively to others.

Progress was also made in the design of the type system that could ex-
press additional security properties as typing assertions. For instance, we
studied typing mechanisms to support a purely static form of capability en-
forcement. Like traditional capability-based systems, our type system allows
agents to access objects only if they have a capability to do so. Capabilities
may be granted by the host and are unforgeable by agents. However, unlike
traditional capability systems, agents need not carry and present capabilities
at run-time. Rather, as with types, capabilities are a purely static concept
and hence incur no dynamic overhead.

The drawback of this approach is that capabilities cannot always be
revoked by the host. Instead, the host and the agent must agree to re-
voke a capability. Nevertheless, we found compelling applications for such
a mechanism, including static verification of memory management (garbage
collection) and concurrency control.

Publications

(1) Morrisett, G. and F. Smith. Mostly Copying and Conservative Mark-
Sweep Collection. International Symposium on Memory Management,
Vancouver, CA, Oct. 1998, 68-78.

(2) Schneider, F.B. On Traditions in Marktoberdorf. Deductive Program
Design (M. Broy, ed.) ASI Vol. F152. Springer-Verlag, Heidelberg,
1-4.

(3) Schneider, F.B. Notes on Proof Outline Logic. Deductive Program
Design (M. Broy, ed.) ASI Vol. F152. Springer-Verlag, Heidelberg,
351-394.

(4) Schneider, F.B. On Concurrent Programming. Springer Verlag, NY,
1997, 473 pages.

(5) Schneider, F.B. (ed.) Information Systems Trustworthiness — Interim
Report. Computer Science and Telecommunications Board Commis-
sion on Physical Sciences, Mathematics, and Applications National
Research Council. April 1997. ' '

(6) Dolev, D., R. Reischuk, F.B. Schneider, and H.R. Strong. Report
on Dagstuhl Seminar on Time Services, Schloss Dagstuhl, March 11~
March 15 1996. Real-Time Systems 12, 3 (May 1997), 329-345.

(7) Schneider, F.B. Editorial: New Partnership with ACM. Distributed
Computing 10, 2 (1997), 63.

(8) Minsky, Y., R. van Renesse, F. B. Schneider, and S. D. Stoller. Cryp-
tographic support for fault-tolerant distributed computing. Proc. of
the Seventh ACM SIGOPS European Workshop “System Support for
Worldwide Applications” (Connemara, Ireland, Sept. 1996), ACM,
New York, 109-114.

(9) Johansen, D., R. van Renesse, and F.B. Schneider. Supporting Broad
Internet Access to TACOMA. Proc. of the Seventh ACM SIGOPS Eu-
ropean Workshop “System Support for Worldwide Applications” (Con-
nemara, Ireland, Sept. 1996), ACM, New York, 55-58.

(10) Stoller, S.D. and F.B. Schneider. Automated Analysis of Fault-Tolerance
in Distributed Systems. Proc. of the First ACM SIGPLAN Workshop

on Automated Analysis of Software (R. Cleaveland and D. Jackson,
eds.) (Paris, France, Jan. 1997) ACM, New York, 33-44.

6

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

Stoller, S.D. and F.B. Schneider. Automated Stream-Based Analy-
sis of Fault-Tolerance. Formal Techniques in Real-time and Fault-
Tolerant Systems (FTRTFT ’98), (September 1998, Lyngby, Den-
mark), Lecture Notes in Computer Science, Volume 1486, Springer
Verlag, Berlin, 1998, 113-122.

Morrisett, G., D. Walker, and K. Crary. From System F to Typed As-
sembly Language. ACM Transactions on Programming Languages and
Systems, 21(3), May 1999, pp. 528-569. An earlier version appeared in
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (San Antonio, TX, Jan. 1998), ACM 85-97.

Crary, K., D. Walker, and G. Morrisett. Typed Memory Manage-
ment in a Calculus of Capabilities. ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages (San Antonio, TX,
Jan. 1999), ACM, 262-275.

Glew, N. and G. Morrisett. Type-Safe Linking and Modular Assem-
bly Language. ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, (San Antonio, TX, Jan. 1999), ACM, 250-
261.

Johansen, D., R. van Renesse, and F.B. Schneider. Operating Sys-
tem Support for Mobile Agents. Republished in Readings in Agents
(M.N. Huhns and M.P. Singh eds.), Morgan Kaufman Publishers, San
Francisco, CA, 1997, 263-266.

Morrisett, G. and R. Harper. Typed Closure Conversion for Recursively-
Defined Functions (Extended Abstract). In Higher-Order Operational
Techniques in Semantics (HOOTS) II (A. Gordon, A. Pitts, and C.
Talcott, ed.) Vol. 10, Electronic Notes in Theoretical Computer Sci-
ence, Elsevier, 1998.

Schneider, F.B. (editor). Trust in Cyberspace. National Academy
Press, Washington, D.C. 1999, 331 pages.

Schneider, F.B. On Concurrent Programming. Invited “Inside Risks”
column. Communications of the ACM 41, No. 4 (April 1998), 128.

Gries, D. and F.B. Schneider. Adding the everywhere operator to
propositional logic. Journal of Logic and Computation 8, No. 1 (Feb.
1998), 119-129.

(20)

(21)

(22)

(23)

(24)

(26)

(27)

(28)

Schneider, F.B. Towards Fault-Tolerant and Secure Agentry. Invited
paper. Proceedings of the 11th International Workshop WDAG ’97,
Saarbrucken, Germany, Sept. 1997. Lecture Notes in Computer Sci-
ence, Volume 1320, Springer-Verlag, Heidelberg, 1997, 1-14.

Morrisett, G., K. Crary, N. Glew, and D. Walker. Stack-Based Typed
Assembly Language. Proceedings of the ACM Workshop on Types
in Compilation (Kyoto, Japan, Mar. 1998), Xavier Leroy and At-
sushi Ohori, editors, Lecture Notes in Computer Science, Volume 1473,
Springer-Verlag, Heidelberg, 1998, 28-52.

Crary, K., S. Weirich, and G. Morrisett. Intentional Type Analysis in
Type Erasure Semantics. ACM SIGPLAN International Conference
on Functional Programming (Baltimore, MD, Sep. 1998), ACM, 301-
312.

Schneider, F.B. Improving Networked Information System Trustwor-
thiness: A Research Agenda. Proceedings 21st National Information
Systems Security Conference (October 1998, Arlington, Virginia), Na-
tional Computer Security Center, 766.

Smith, F. and G. Morrisett. Comparing Mostly-Copying and Mark-
Sweep Conservative Collection. Proceedings of the 1998 ACM SIG-
PLAN International Symposium on Memory Management, Vancouver,
BC, Oct. 1998.

Schneider, F.B. Towards Trustworthy Networked Information Systems.
Invited “Inside Risks” column. Communications of the ACM 41, 11
(November 1998), 144.

Schneider, F.B. and S.M. Bellovin. Evolving Telephone Networks.
Invited “Inside Risks” column. Communications of the ACM 42, No.
1 (Jan. 1999), 160.

Schneider, F.B., D. Johansen, R. van Renesse. What Tacoma Taught
Us. Mobility: Processes, Computers, and Agents, Dejan S. Milojicic,
Frederick Douglis, and Richard G. Wheeler (eds.), Addison Wesley
and the ACM Press, April 1999, 564-566.

Morrisett, G., K. Crary, N. Glew, D. Grossman, R. Samuels, F. Smith,
D. Walker, S. Weirich, and S. Zdancewic. TALx86: A Realistic Typed
Assembly Language. ACM SIGPLAN Workshop on Compiler Support
for System Software (Atlanta, GA, May 1999), ACM, 25-35.

8

(29) Johansen, D., K. Marzullo, F. B. Schneider, K. Jacobsen, and D.
Zagorodnov. NAP: Practical Fault-tolerance for Itinerant Computa-
tions. Proc. 19th IEEE International Conference on Distributed Com-
puting Systems (June 1999, Austin, Texas), IEEE, 180-189.

(30) Zdancewic, S., D. Grossman, and G. Morrisett. Principals in Program-
ming Languages: A Syntactic Proof Technique. 1999 ACM SIGPLAN
International Conference on Functional Programming, (Paris, France,
Sep. 1999), ACM, 197-207.

(31) Erlingsson, U. and F.B. Schneider. SASI enforcement of security po-
lices: A retrospective. Proceedings New Security Paradigms Workshop
(Ontario, Canada, Sept 1999), ACM.

(32) Schneider, F.B., S. Bellovin and A. Inouye. Building trustworthy sys-
tems: Lessons from the PTN and Internet. IEEE Internet Computing,
3, 5 (November-December 1999), 64-72.

Patents

(1) Transparent fault tolerant computer system. United States Patent
5,802,265, Sept. 1, 1998. Co-inventors: T.C. Bressoud, J.E. Ahern,
K.P. Birman, R.C.B. Cooper, B.Glade, and J.D. Service.

(2) Transparent fault tolerant computer system. United States Patent
5,968,185, Oct. 19, 1999. Co-inventors: T. C. Bressoud, J. E. Ahern,
K. P. Birman, R. C. B. Cooper, B. Glade, and J. D. Service.

